Problem Set 1: Due TBA

1) Complete the calculation of the induced mass of potential flow around a sphere, which was begun and discussed in class. In particular, show the energy of potential flow is

$$
E=\rho\left[4 \pi(\mathbf{A} \cdot \mathbf{u})-V_{0} \frac{u^{2}}{2}\right]=m_{i k} \frac{u_{i} u_{k}}{2}
$$

where \mathbf{A} is the dipole moment of the flow and V_{0} is the volume of the body in motion at \mathbf{u}. Compute $m_{i k}$, the induced mass tensor. What is its value for a sphere?
2) Consider a small body immersed in a fluid flow which oscillates. Derive the general relation between the velocity of the body and that of the fluid. What is the result for a spherical body of density ρ_{0} ?
3) Derive the energy relation

$$
\frac{\partial}{\partial t}\left(\rho \frac{v^{2}}{2}+\rho \epsilon\right)=-\nabla \cdot\left(\rho \mathbf{v}\left(\frac{v^{2}}{2}+\omega\right)\right)
$$

from the continuity, Euler and energy equations. Here, ω is the enthalpy density.
4) a) Derive the dispersion relation for an azimuthally symmetric wave propagating along the \hat{z} axis and in radius in an ideal incompressible, unbounded fluid rotating at $\Omega=\Omega_{0} \hat{z}$.
b) Now assume the fluid is bounded by a cylindrical wall at $r=R$. What is the profile of radial velocity?
5) A spherical hole with radius a is suddenly formed in an incompressible fluid filling all space. How long does it take for fluid to fill up the hole?

